An abundance of invariant polynomials satisfying the Riemann hypothesis
نویسنده
چکیده
In 1999, Iwan Duursma defined the zeta function for a linear code as a generating function of its Hamming weight enumerator. It can also be defined for other homogeneous polynomials not corresponding to existing codes. If the homogeneous polynomial is invariant under the MacWilliams transform, then its zeta function satisfies a functional equation and we can formulate an analogue of the Riemann hypothesis. As far as existing codes are concerned, the Riemann hypothesis is believed to be closely related to the extremal property. In this article, we show there are abundant polynomials invariant by the MacWilliams transform which satisfy the Riemann hypothesis. The proof is carried out by explicit construction of such polynomials. To prove the Riemann hypothesis for a certain class of invariant polynomials, we establish an analogue of the Eneström-Kakeya theorem.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملAn equivalence for the Riemann Hypothesis in terms of orthogonal polynomials
We construct a measure such that if {pn(z)} is the sequence of orthogonal polynomials relative to that measure, then the Riemann Hypothesis with simple zeros is true if and only if limn→∞ p2n(z) p2n(0) = (1/2+iz) (1/2) where (s)= 1 2 s(s − 1) −s/2 (s/2) (s) is the Riemann -function. © 2005 Elsevier Inc. All rights reserved.
متن کاملAn Arithmetic Formula for Certain Coefficients of the Euler Product of Hecke Polynomials
Abstract. In 1997 the author [11] found a criterion for the Riemann hypothesis for the Riemann zeta function, involving the nonnegativity of certain coefficients associated with the Riemann zeta function. In 1999 Bombieri and Lagarias [2] obtained an arithmetic formula for these coefficients using the “explicit formula” of prime number theory. In this paper, the author obtains an arithmetic for...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008